
Abstract

This paper shows how parallel processing may improve the computational efficiency

of the transient dynamic non-linear analysis of reinforced concrete plates subjected

to blast loading. The results presented in the paper are based on a parallel scheme

for a time marching procedure using the explicit Newmark’s algorithm. It is shown

that very high computational efficiency may be obtained by decomposing the finite

element mesh into a number of sub-domains for distributed analysis on multiple pro-

cessors. Through examples it is demonstrated how this efficiency depends on the

problem size (i.e. the level of refinement of the problem idealisation), the number of

sub-domains and the status of the analysis with regards to the states of the material.

Keywords: parallel processing, non-linear analysis, reinforced-concrete, plates.

1 Introduction

Application of parallel and distributed computing to finite element analysis requires

the development of parallel algorithms [1]. For these algorithms to be applied ef-

fectively then considerable pre-processing of the finite element model is required to

ensure that the analysis is efficiently undertaken in parallel [1].

The present paper discusses a parallelisation scheme of the program for the tem-

poral analysis of reinforced concrete plates subjected to severe dynamic loads. This

program utilises an explicit Newmark iteration scheme [2, 3] as a temporal discretisa-

tion of the finite element formulation with simple six noded triangular facet elements

which account for a complex non-linear material model [4] represented in a layered

manner [5]. The example runs show very high speed-ups and efficiency results which

proves the importance of using parallelisation for efficient solution of the problem.

The paper also demonstrates the virtues of the domain decomposition tools developed

1

h

m

i

2
1

z

ζ

ζ

∆ζ
i i

i

σ

ξ σ

-h/2 -0.5

+0.5+h/2

Layers Stress Diagram

Figure 1: A layered model and the corresponding stress representation

by the authors [1, 6, 7] for the pre-processing of the finite element mesh.

2 Sequential non-linear finite element analysis

For the solution of this transient engineering problem a finite element spatial discreti-

sation has been used to establish dynamic equilibrium equation for the structure. The

resulting time dependent sets of differential equations were further discretised in time

to obtain the numerical solution. An elasto-viscoplastic constitutive relationship for

the concrete and steel is adopted and built into the discretised system. Without con-

sidering all the alternatives the theoretical base of the program is briefly discussed in

the following sections. This is part of a larger project concerned with non-linear finite

element analysis [8].

In the program a flat triangular element, which was originally developed for linearly

elastic plates is used in the temporal analysis. This element is obtained by combin-

ing the constant strain plane stress element and the constant moment plate bending

element (due to Morley [9]) to form the simplest facet element.

The element generalised stresses (or in this case the stress resultants) {σg} are

obtained by integrating the corresponding stress components with respect to the thick-

ness co-ordinate, then they may be used to determine the internal element forces {q}
for the temporal integration:

{q} = {q(d, v)} =

∫

A

[B]T{σg}dA (1)

For further details of the evaluation of Equation (1) the reader should consult reference

[2]. The global internal resisting force vector {N} may then be calculated by summing

the contributions from all the elements in the standard manner for each of the global

degrees of freedom:

2

N(d, v) =
nelem
∑

i=1

{qi} (2)

The material model used is as described in reference [8].

3 Parallel non-linear finite element analysis

3.1 Parallelisation scheme

The scheme is a special type of parallelisation called geometric parallelism. With this

type of scheme each processor executes the same code on data corresponding to a

sub-region or sub-domain of the whole structure being simulated or processed. Inter-

processor communication is possible to permit the exchange of boundary data between

processors representing connections between neighbouring sub-domains. This is an

explicit domain decomposition approaches [1].

3.2 Pre-processing

When considering the scheme of geometric parallelism to finite element analysis the

idealisation has to be sub-divided into a number of sub-domains. Each of these sub-

domains will be subjected to the same instruction set by the worker tasks concurrently

on each processor. To make the parallel analysis procedure efficient the following

conditions have to be considered when creating the partitions:

• The processors must all complete their task at the same time if processors are

not to be left idle waiting for the others to finish. That means the computational

load has to be balanced between the processors which are part of the parallel

system. In the case of a homogeneous network of processors (i.e. identical

hardware nodes) the number of finite elements have to be equal to the number

of sub-domains. This is based on the assumption that the computational load is

equal for each of the finite elements. This would be the case most of the time,

especially at the beginning of a non-linear analysis procedure. If the computa-

tional load is not equal for each element then some weighting facility has to be

implemented.

• The physical partitions should be made such that interprocessor communication

is minimised. Parallel machines usually have relatively slow communication

capacity between the computing elements compared to their processing capa-

bilities. During the solution procedure the amount of inter-processor commu-

nication has to be minimised. As it was discussed in Section 3.1, in the case

of an explicit dynamic finite element technique the amount of this communica-

tion is proportional to the sum of the degrees of freedom of the finite element

3

nodes which lie on the inter-sub-domain boundary. Thus to make the parallel

analysis procedure faster and more efficient the number of these nodes must be

minimised.

These two conditions define a special optimisation problem which can be solved

in a number of ways [1]. It is not particularly difficult when the finite element mesh

is regular. For the present work the meshes were created using a parallel adaptive

unstructured mesh generator described in References [1, 11]. The decomposition of

the generated irregular meshes were done using the Enhanced Sub-domain Generation

Method (ESGM) detailed in Reference [6].

3.3 Parallel algorithm

The parallel algorithm for the analysis program is well defined by the parallelisation

scheme described in Section 3.1. The master task reads in the description of the finite

element idealisation, i.e. the mesh definition and the material specifications. The

pre-processing then prepares and delivers the sub-domains to the worker tasks with

the information they need concerning their connectivity. This procedure described in

detail in Reference [6].

For the non-linear analysis each worker task executes the same program code but

on different sub-domains of the problem. The difference between this code and the

sequential version is detailed as follows. The actual instructions to carry out the steps

of the analysis are the same as the finite element sub-domains are stored within the

program in a same structured way as the original domain.

Those components of the vectors of masses, external loads and internal forces,

i.e. {M}, {F ext} and {N} respectively, which correspond to nodes on the boundary

interface between adjacent sub-domains have to be exchanged between these sub-

domains. This exchange communication is the same for all of these three vectors with

the difference that for the vector of masses, {M}, the exchange is done only once at

the beginning of the analysis after the calculation of the element mass contributions

have been carried out. The masses are constants throughout the iteration procedure

and hence only have to be calculated once. For the vectors of external loads and

internal forces, i.e. {F ext} and {N} the same communication has to be repeated in

each iteration step when calculating the residuals. To carry out this communication a

function has been written in Parallel C [10] which is used in the assembly of all three

vectors.

At the end of each iteration step the energy balance check is carried out. But in a

distributed environment the energy values for the whole system have to be calculated

by summing up all the contributions of each sub-domain. But the fact that the inter

sub-domain nodes are represented within more than one sub-domains at the same time

their contribution to the total energy would be duplicated. To avoid this once in the

beginning of the program, in the pre-processing phase the worker tasks determine

from which sub-domain each inter-sub-domain node will ‘contribute’ to the energy

4

values. The worker tasks do not therefore consider all the degrees of freedom of their

sub-domain. In the summation the shared nodes are added only if it is appropriate.

Determining the sub-domain contributions to the energy calculations in such a way,

ensures that the energy values that are sent to the master task, form the total values.

The master task now is in the position of being able to carry out the energy balance

check and reports its result to the users terminal.

On completion of the iteration all the worker tasks send their results which in-

clude stresses, strains, displacements, etc. to the master task which then assembles the

messages received into results corresponding to the whole structure and saves these

to disk. Naturally these results are numerically identical to those of the sequential

program, but they are achieved in considerably shorter time.

3.3.1 Communication routine

With respect to their communication requirements all the finite element nodes held

within one sub-domain are divided into three groups: to those which appear in one

other sub-domain, these are referred to as P-nodes; the ones which appear in more than

two sub-domains, are referred to as M-nodes; and the ordinary nodes which are not

common with any other sub-domain. Figure 2 describes this classification. This clas-

sification was neccessary to ensure that the message passing in the program is efficient.

If the domain consists of ordinary and P-nodes alone then the message passing would

only be between pairs of sub-domains. For M-nodes the communication is more com-

plex; the relevant values have to be collected from each participating sub-domain and

then the sum of these values have to be re-distributed back to all the connected sub-

domains. Thus the overall communication scheme is divided into two stages; first the

P-communication deals with all the P-nodes then the M-communication collects all

the values for the remaining, usually very few, M-nodes.

- P-nodes

- M-nodes

- group of P-nodes

- M-node relation

Figure 2: The different type of FE nodes with respect to communication

5

L/2

p

p

L
/2

Figure 3: The quarter of the microconcrete plate model

4 Example

To test the result of the parallelisation a blast load experiment published in Section

4.1 of Reference [12] as Test 1: Bare Panel Subjected to Uniform Blast Loading was

simulated. In this experiment a thin microconcrete slab, 391mm square and 15.2mm

thick, was supported on the edges of an open steel box (sunk into the ground) so that

the upper face of the slab was flush with the ground. The corners were held down with

clamps attached to the box, and the unsupported span was 366mm. The lower face of

the slab was reinforced to a level of 0.75% each way with 1.63mm wires at 22.1mm

centres. The quarter of the plate model is shown in Figure 3. The microconcrete panel

with concrete compressive strength of approximately 28MPa was subjected to peak

blast pressure loading of 138kPa.

By considering the symmetrical conditions, a quarter of the plate model was ide-

alised using 208 triangular finite elements. Each element comprised thirteen layers

of which two represented the two orthogonal sets of reinforcement bars. This mesh is

referred to as the ‘A2’ model. This original idealisation was decomposed into two sub-

domains of 104 elements, four sub-domains of 52 elements and eight sub-domains of

26 elements. The idealisation is shown in Figure 4 with the three decompositions il-

lustrated. Both the ‘A2’ and ‘A3’ decompositions were undertaken using the enhanced

subdomain generation method [6].

The plate was re-meshed using the 280 of the same triangular finite elements. This

mesh is referred to as the ‘A3’ model. This idealisation was decomposed into two sub-

domains of 140 elements, four sub-domains of 70 elements and eight sub-domains of

35 elements. The idealisation is shown in Figure 5 with the three decompositions

illustrated.

The numerical analysis was carried out for a small part of the simulation process

using the original sequential version of the program and the execution time was mea-

6

Figure 4: The ‘A2’ finite element idealisation divided into two, four and eight sub-

domains

Figure 5: The ‘A3’ finite element idealisation divided into two, four and eight sub-

domains

sured, tseq. Subsequently the parallel program executed the same number of iterations

on the decomposed meshes. The parallel execution times, tpar, for the three different

decompositions were measured and the speed-ups, S, and efficiencies E calculated

as described in Reference [1]. In the case of this parallel program the number of

processors are always equal to the number of worker tasks thus to the number of sub-

domains.

Table 1 shows the execution times, the speed-ups and the parallel efficiencies

achieved by running the program for 25 iterations as a benchmark for the ‘A2’ mesh

and Table 2 shows the same for mesh ‘A3’. These timing results do not include the

time required for the pre-processing of the finite element mesh (i.e. the domain de-

composition ≈ 20 − 30sec), the preparation of sub-domain connectivity data for the

communication routine (≈ 1sec), the delivery of the sub-domains to the actual pro-

cessing nodes (≈ 2 − 3sec) nor the setting up time before the iteration commences

(≈ 1sec). The number of iterations required to run the non-linear simulation for a

sufficient time in real terms (≈ 2 − 3msec), is large because of the very small time

steps (∆t ≈ 10−6sec). The number of iterations is usually in the 103 − 105 range,

rendering the execution of the program very long. Compared to this, the amount of

time spent on the pre-processing of the finite element mesh and the setting-up of the

calculations is negligible.

7

Num. of Proccessors exec. time Speed-up Efficiency

N tpar S E

1 - Sequential run 257s (=tseq) n/a n/a

2 168.9 1.53 76.4%

4 84.3 3.05 76.2%

8 42.3 6.07 75.9%

Table 1: Speed-up values and efficiencies for the parallel system using mesh ‘A2’

based on 25 (linear) iterations

Num. of Proccessors exec. time Speed-up Efficiency

N tpar S E

1 - Sequential run 346s (=tseq) n/a n/a

2 223.5 1.55 77.4%

4 112.4 3.08 77.0%

8 56.8 6.09 76.1%

Table 2: Speed-up values and efficiencies for the parallel system using mesh ‘A3’

based on 25 (linear) iterations

Table 3 summarises the nodal connectivity between the sub-domains for both ‘A2’

and ‘A3’ idealisations. This table list the number of P and M nodes which determine

the communication load on the parallel system.

Figure 6 shows the parallel efficiencies of the ‘A2’ mesh in the initial part of the

iteration measured on 25 time step iterations (as given in Table 1). The material is

mainly in a linear state here. As the iteration continues more and more layers of the

finite elements start cracking and are in a non-linear material state. The cracked layers

represent a much higher computational load than the un-cracked ones. The fact that in

certain sub-domains there are many more cracked layers than within other ones means

that there is an extra computational load in those sub-domains. This decreases the

parallel efficiency because the extra computation causes a computational in-balance

within the processor network. As the cracked and non-linear area propagates, thus the

number of cracked layers becomes almost equal in each sub-domain, the parallel effi-

ciency is regained because the sub-domains become computationally balanced again.

This process is shown in Figure 7 for the same ‘A2’ mesh sampled with 25 time steps

using eight sub-domains, where the variation of the parallel efficiency of the processor

network is plotted against the number of iterations. This current efficiency was cal-

culated on the basis of the computational performance during the immediate previous

25 iterations. The other graph which is plotted on the same co-ordinate system is the

standard deviation (SD) of the number of cracked layers in each sub-domain at the

displayed iteration number. This graph is calculated using the usual simple formula:

8

Idealisation ‘A2’ ‘A3’

No. sub-domains 2 4 8 2 4 8

No. P nodes 17 32 62 33 65 98

No. d.o.f. 35 64 122 67 129 192

No. M nodes 0 1 3 0 2 5

No. d.o.f. 0 3 9 0 6 15

No. other nodes 432 416 384 568 534 498

No. d.o.f. 656 624 560 856 788 716

Total No. nodes 449 601

Total No. d.o.f. 691 923

Total No. elements 208 280

No. elements/sub-domain 104 52 26 140 70 35

Table 3: The summary of nodal connecetivity between the sub-domains for the ‘A2’

and ‘A3’ meshes

SD =
√

nc2 − nc2 (3)

where nc is the number of cracked layers in a subdomain. Despite the fact that the

efficiency is measured on a relatively wide (25 step) interval of iterations and the

deviation of the number of cracked layers correspond to the actual iteration number,

the correlation between the two graph is easily recognised.

0

50

100

150

200

250

300

75

75.5

76

76.5

77

Sequential 2 proc. 4 proc. 8 proc.

257

168

84

42

76.4
76.2

75.9

Execution times [sec] Parallel Efficiency [%]

[sec]

[%]

Execution
times

Parallel
efficiency

Figure 6: The chart of execution times and efficiencies for the ‘A2’ FE mesh

9

70

72

74

76

90

60

30

0

400 450 500 550 600 700 800 900 1000 1100 1200

Parallel efficiency

Std. dev. of the No. cracked layers in each SD

Number of iterations

[%]

Parallel
efficiency

Standard
deviation

Parallel efficiency

Standard deviation of the number of cracked layers in each sub-domain

Figure 7: The variation of the parallel efficiency for the ‘A2’ FE mesh throughout the

iteration (eight sub-domains)

5 Conclusion

The timing results presented in Tables 1 and 2 show that the parallelisation of the given

algorithm with the presented parallelisation scheme is very efficient. The parallel

program runs almost as many times faster as the number of processor employed. This

is a consequence of the complexity of the problem being solved, the special structure

of the explicit solution scheme and that the amount of communication overhead is

relatively small.

The efficiency results in Figure 6 show that the parallel communication scheme is

well organised since with an increased communication requirement the parallel pro-

gram did not loose significant efficiency. This demonstrates that the communication

scheme has been implemented making efficient use of the given hardware with its lim-

itations. It has to be noted here too, that although the communication requirements are

increasing in Figure 6 as the number of processors are increasing, but the special lay-

out of the hardware connectivity handles this increase in a distributed way, rather than

having to go through only one connection link. This contributes to keep the efficiency

at almost the same level.

It can also be seen from Figure 6 that even though there is a decrease in efficiency

if the decomposition is not properly balanced this decrease is still smaller than the

disturbance caused by the non-linear material states later in the iteration as displayed

in Figure 7.

As a conclusion of these examples it may be stated that for the optimisation of the

initial domain decomposition it is more important to have the load balance right than

10

to minimise the inter sub-domain connections. The progressing non-linear areas will

destroy the load balance so the most important factor is to have some dynamic load

balancing procedure supporting the parallel analysis. This would correct the prob-

lems of the initial domain decomposition (if there are any) and would account for the

developing in-balances resulting from non-linearity. Thus an efficient dynamic load

balancing algorithm would also decrease the importance of the initial mesh partition-

ing technique.

The parallelisation of this algorithm is a good example that in the area of tran-

sient non-linear finite element analysis parallel techniques will have a significant and

increasing role in the future.

References

[1] B.H.V. Topping, A.I. Khan, “Parallel Finite Element Computations”, Saxe-

Coburg Publications, Edinburgh, UK, 1996.

[2] T.J.R. Hughes, T. Belytschko, “Nonlinear Finite Element Analysis”, Course

Notes, Paris, France, 1994.

[3] N.M. Newmark, “A Method of Computation for Structural Dynamics”, Journal

of the Engineering Mechanics Division, ASCE, USA, July, 1959.

[4] F.B.A. Beshara, “Non-linear Finite Element Analysis of Reinforced Concrete

Structures Subjected to Blast Loading”, PhD Thesis, City University, London,

April, 1991.

[5] E. Hinton, D.R.J. Owen, “Finite Element Software for Plates and Shells”, Piner-

idge Press, Swansea, UK, 1984.

[6] J. Sziveri, C. Seale, B.H.V. Topping, “Enhanced Parallel Sub-domain Genera-

tion”, submitted for publication, 1997.

[7] B.H.V. Topping, J. Sziveri, “Parallel Sub-domain Generation Method”, Develop-

ments in Computational Techniques for Structural Engineering, 449-457, Civil-

Comp Press, Edinburgh, UK, 1995.

[8] J. Sziveri, B.H.V. Topping, “Report on the Program JM1 for the Dynamic Non-

linear Finite Element Analysis of Reinforced Concrete Plates Subject to Blast

Loading”, Technical Report to BRE, Heriot-Watt University, Edinburgh, UK,

1996.

[9] L.S.D. Morley, “On the Constant Moment Plate Bending Element”, Journal of

Strain Analysis, 6, 20-24, 1971.

[10] “Parallel C User Guide (compiler version 2.2.4), Reference Manual”, 3L Ltd.,

Livingston, UK, 1991.

[11] A.I. Khan, B.H.V. Topping, “Parallel Adaptive Mesh Generation”, Computing

Systems in Engineering, 2(1), 75-102, Pergamon Press, UK, 1991.

[12] B.J. Broadhouse, A.J. Neilson “Modelling Reinforced Concrete Structures in

DYNA3D”, Safety and Engineering Division, United Kingdom Atomic Energy

Authority, Winfrith, AEEW-M 2465, 1987.

11

